当前位置:首页 > 汽车电子 > 汽车电子技术文库
[导读]安森美半导体车身控制模块设计要求解决方案 人们对汽车的操控性及舒适性需求不断升高,汽车车身中的电子设备越来越多,如电动后视镜、中控门锁、玻璃升降器、车灯乃至其它更多的高级功能等。  典型

安森美半导体车身控制模块设计要求解决方案

人们对汽车的操控性及舒适性需求不断升高,汽车车身中的电子设备越来越多,如电动后视镜、中控门锁、玻璃升降器、车灯乃至其它更多的高级功能等。
 

典型车身控制模块(BCM)设计重要的一步是确定电源要求,以及选择合适的电源方案。一般而言,BCM要求的输入电压在-0.5 V至32 V之间,输出电压为5 V或3.3 V。值得一提的是,汽车内的用电设备越来越多,如果电池直接供电的设备静态电流不够低,而汽车连续停泊较长时间,车内蓄电池可能因为过度放电而使汽车无法重新启动,故BCM设计需要考虑静态电流。此外,汽车应用中可能会常常面对高温环境,所以要求电源提供过温保护。

适合于BCM的电源包括线性电源(或称线性稳压器)和开关电源(或称开关稳压器)。这两种电源各有优势,究竟选择何种电源,还要看具体应用。在车身控制模块的供电电源方面,中国市场上所售汽车中,轿车一般采用12 V电源,而卡车和客车一般采用24 V电源。在12 V电源BCM中,推荐采用安森美半导体的线性稳压器,如NCV4275A等,见图2。NCV4275A是一款带复位和延迟功能的5 V、3.3 V/450 mA低压降(LDO)线性稳压器,这款器件支持可编程微控制器复位,并提供多种特性,如过流保护、过温保护、短路保护等。此外,在下图中位置1处串联一个二极管(MRA4005),这线性电源能有效防止高达-42 V的反向电压;在位置2处并联一个瞬态电压抑制器(TVS)管,可以有效阻止高达+45 V的瞬态电源负载突降(load dump)高压脉冲及不稳定的电源杂波,符合12 V汽车电源系统的ISO16750-2-2003 4.6过压测试规范。实际上,在汽车发动机启动瞬间就可能出现负载突降,从而导致电池电压升高至超过40 V。这些特性让NCV4275A非常适合汽车车身控制模块应用。

实际上,NCV4275A仅是安森美半导体针对汽车应用的宽范围线性稳压器中的一款,其它线性稳压器有如NCV8664/5、NCV4949、NCV8503/4/5/6、NCV4274A等。超低静态功耗的产品,静态电流低至30 μA以下,驱动电流范围在100 mA至450 mA之间。

电源要求及方案选择


24 V电源的BCM应用中,需要将24 V电压转换至5 V或3.3 V,如果采用线性稳压器,电源芯片本身就会有很高的功率消耗,产生大量热量导致温度过高而烧坏芯片,所以我们需要采用开关稳压器,我们推荐采用安森美半导体系列用于汽车的开关稳压器,如NCV51411、NCV8842、NCV8843、NCV33063、NCV33163、NCV3063、NCV3163、LM2576、LM2575及NCV2574等。这些开关稳压器具有较高的效率,避免产生大量的放热,保护芯片,提升系统可靠性。这些汽车应用的开关稳压器驱动电流多数在0.5 A至1.5 A之间,有的达到2.5 A(NCV33163),开关频率在50 kHz至300 kHz之间。以NCV51441为例,这款器件使用V2控制架构,提供无可比拟的瞬态响应、极佳总体稳压精度及最简单的环路补偿。这款器件上的“BOOST”引脚支持“充当启动电路(Bootstrapped)”工作,将能效提升至最高;集成的同步电路支持并行电源工作或将噪声降至最低。

车身网络要求及发展趋势

可以应用于汽车中的系统总线有多种,如控制器区域网络(CAN)、本地互连网络(LIN)及FelxRay等。这些总线的特点各不相同,表1比较了汽车应用中几种常见的系统总线,并列出了典型的安森美半导体总线收发器产品。


安森美半导体的总线收发器系列非常适合车身控制网络应用要求。图3a)及b)分别显示了基于安森美半导体CAN收发器AMIS-42665及LIN收发器NCV7321的典型电路。值得一提的是,AMIS-42665提供小于的10 μA的极低静态电流。支持总线唤醒,共模电压范围-35 V至+35 V,可以承受额定+/-8 kV的静电放电(ESD)脉冲。NCV7321则支持-45 V至+45 V的电压范围,承受额定5 kV的ESD脉冲。这些器件均提供强大的保护功能。


在车身控制网络应用中,需要尽可能地配合降低成本及空间要求,同时提升系统的稳定性和长期可靠性,故需要提升元器件的集成度。得益于近年来出现的混合信号工艺,如安森美半导体的Smart Power高压BCD工艺,高压模拟电路如今能够与低压电路集成起来,使更高集成度的系统芯片得以开发和应用。如安森美半导体的NCV7440在同一颗芯片上集成了线性稳压器及CAN收发器,NCV7420则集成了线性稳压器及LIN收发器。这样的集成有效节省PCB板空间,可以给MCU单独供电,有效遏制其它模块对MCU电源的干扰。

安森美半导体身为全球领先的高性能、高可靠性硅解决方案供应商,更为汽车车身控制网络应用推出一款超高集成度的芯片——NCV7462。这款芯片集成了线性稳压器、CAN收发器、LIN收发器、看门狗(WD)电路、低边驱动及高边驱动,将所需外部元件数量减至极少,仅占用极小的电路板空间,并帮助简化设计流程。

遥控上锁及开锁设计要求及解决方案

汽车中的遥控上锁及开锁的应用越来越普及。车身控制模块使用315 MHz(美国、日本)或433MHz(欧洲)频率,通过高频接收和发送来实现遥控上锁及开锁功能。这类应用中的设计难点在于设计阻抗匹配电路,从而使功率损耗降至最低。此类应用的通用要求包括低静态电流、提供睡眠模式、低发射功率、高接收灵敏度、低功耗及适宜的频率范围等。而安森美半导体的ON-53480高频收发器很好地满足这些设计要求,如静态电流低至小于1 µA,带有唤醒及睡眠检测功能,信号电平仅为10 dBm,接收灵敏度更是低于-100 dBm,且工作电流仅为10 mA,频率范围为280至343 MHz。

板外大功率负载驱动及方案比较

车身控制模块电路板需要为板外的一些大功率负载供电,这些负载包括汽车内部照明(5 W及10 W)、单向电机和汽车喇叭等。一种可选的方案是采用板内继电器。继电器的线圈属于感性负载,而感性负载在启动时需要比维持正常工作所需电流大的启动电流,且感性负载在接通电源或断开电源的瞬间会产生反向电动势。要驱动继电器,可以采用安森美半导体的NUD3124、NUD3160或NCV7608等继电器驱动器。


另一种方案是采用“预驱动器+MOSFET”来驱动板外大功率负载,其中预驱动器可以采用安森美半导体的NCV7513A,这器件支持并行端口及SPI端口通信,可编程,提供失效模式检测及短路和断路诊断功能。

第三种方案是采用SmartFET驱动。这是带保护的MOSFET,在MOSFET基础上增加了多种功能,如过压钳位、ESD保护、过流保护、过温保护、反压保护及高边和低边驱动。典型器件如低边驱动的NCV8401/2/3,及用于高边驱动(内部集成了升压电路)的NCV8450和NCV8460等。这三种方案的优缺点见表2。

应用于BCM的其它方案

除了上述板外大功率负载,汽车应用中常见的电动后视镜方面,可以采用安森美半导体的NCV7703来驱动其中的转向电机。这器件提供3个半桥输出,输出电流为0.6 A,最高达1 A,并具备自诊断功能,提供低静态电流、SPI通信及低压/过压/过温保护等特性。

此外,车身控制模块需要采集车门、车锁、组合开关等数十个信号,往往需要扩展MCU的输入端口,这就需要并行端口转串行端口的逻辑转换芯片,常用的是安森美半导体的8位移位寄存器MC14021B。

安森美半导体还为组合尾灯提供不同的解决方案。如NCV7680是一款8通道低边恒流驱动器,能以脉宽调制(PWM)方式设定尾部行车/刹车电流输出,而NSI45xx则是新推出的恒流线性稳压器(CCR),基于安森美半导体待批专利的自偏置晶体管技术,以低成本、强固等特点提供较高性能,着眼于替代一些汽车尾灯中使用的电阻型驱动器。

总结:

应用环境苛刻的车身控制模块(BCM)对元器件提出了更高的要求。本文探入探讨BCM设计在电源、车身网络及板外大功率负载驱动等多个方面的要求,并比较分析了一些领域中不同方案的优劣势。安森美半导体针身为全球领先的高性能、高能效硅方案供应商,针对车身控制模块等汽车应用提供具有强固保护特性、高可靠性、低静态电流的解决方案,如电源稳压器、总线收发器、高频收发器、继电器驱动器、预驱动器、电机驱动器、LED驱动器及MOSFET等,帮助设计人员为他们的BCM设计选择更佳的元器件方案,从而在市场上占据优势。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

尽管当前整个行业处于波动周期,全球半导体产业挑战重重,但安森美势头不减。在其最新发布的2023年第三季度财报中,仍然交出了超速增长的业绩表现。高速增长的背后,来自其专注在可持续芯生态上的构建,并且通过电源和感知两方面的技...

关键字: onsemi 安森美 ElietSiC

业内消息,本周美国半导体厂商安森美发布了今年三季度业绩数据,尽管其营收高于分析师的普遍预期,并且净利润也高于去年同期,但是该公司对四季度的业绩预期却比较消极,低于市场普遍预期,并且计划裁员 900 人。

关键字: 安森美 裁员

SiC市场需求旺盛增长,对于供应商而言,抓紧产能扩充是重中之重。已经拿到了多个LTA订单的要确保供货稳定,而没有LTA的现阶段也无需担心销路问题。但不可否认的是,虽然市场足够大,但竞争依然存在。对于SiC技术、设计支持和...

关键字: SiC 光伏逆变器 储能 新能源 安森美

随着碳中和碳达峰的目标迫近,实现低碳可持续发展成为了业界关注的焦点。而这也让近日在上海召开的PCIM Asia2023变得异常火热,众多国际领先的电源和功率器件厂商都展示了自己全新的产品和技术。而在安森美(onsemi)...

关键字: onsemi 安森美 SiC 光伏逆变器 汽车电气化

使用 IAR Embedded Workbench for Arm开发基于英飞凌最新TRAVEO™ T2G车身控制MCU的产品时,开发者能充分发挥MCU性能,确保代码质量和功能安全。

关键字: 车身控制 MCU 微控制器

安森美贴心犒劳工程界“劳模”,扫描下方二维码填写资料,即有机会领取安森美送上的京东卡福利~

关键字: 安森美

安森美半导体中国区销售副总裁谢鸿裕(Roy Chia)表示,半导体乃是很多应用的基础,也是全球性的行业,合作将促成创新。安森美半导体将仍以创建高能效的半导体,帮助使世界更绿、更安全、更包容和互联为使命,致力成为电源、模拟...

关键字: 安森美 半导体 特定领域

安森美的EliteSiC系列碳化硅(SiC)技术提升Ampt的直流优化器性能

关键字: 安森美 Ampt 光伏电站

通过安森美的展示,了解工业和汽车领域的最新创新科技

关键字: 安森美 CES

领先的电子行业媒体认可安森美在汽车半导体行业的颠覆创新和行业领先地位

关键字: 安森美 汽车半导体 汽车电子
关闭
关闭